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Background



Knots are circles embedded in 3-dimensional space

Intuitively, a knot is a piece of string that has been tangled around
itself with no self-intersection in 3D space with the ends connected
to each other.

Figure 1: A knot.



Knots and links can be represented by diagrams
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Figure 2: Diagrams of the trivial knot and trefoil knot.
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Figure 3: A diagram of a link.



Knots and links can be represented by diagrams

Figure 4: A much more complex diagram of the unknot




A knot or link can be assigned an orientation

Any component of a projection (i.e. any distinct curve) can be
assigned a consistent direction moving along the curve, called an
orientation. Any projection with orientations assigned is called
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Figure 5: A non-oriented and oriented trefoil knot.



Reidemeister Moves can be performed on a projection to
produce another projection of the same knot
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Figure 6: Reidemeister moves of Type I, Il, and Il




All projections of a knot are connected by a series of
Reidemeister moves

Theorem (Reidemeister)

Diagrams D and E represent the same knot if and only if D and E
are connected by a series of Reidemeister moves.



The Problem

Can we find good (or better) lower and/or upper bounds on the
number of Reidemeister moves needed to transform one projection
of a knot into a another. Particularly, can we use a knot diagram
invariant to do so?



Motivation

» A solution to the problem has applications in finding an
algorithm for determining a series of Reidemeister moves
between diagrams;

> And more broadly, algorithmically distinguish knots



Diagram Invariants and Current Work



Werithe is the sum of signs of crossings

Assign each crossing of an oriented knot or link projection with a
positive or negative 1, based on the picture below. For a crossing
c, we call this number the sign of ¢, or sgn(c). The sum of signs
among all crossings is called the writhe.
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Figure 7: Positive and negative crossings of oriented knots



Werithe is the sum of signs of crossings
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Figure 8: The writhe is (—1) + (-1) + (-1) = -3



Self-Crossing Index (SCI): Calculating Index

To calculate this diagram invariant, first, the index of a region

must be defined. Set the exterior region to have index 0 and use
the following rule:

Figure 9: Rule for assigning index to regions of a diagram.



We can label all the regions of a knot with indices
0
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Figure 10: First assign an index of 0 to the exterior region.



We can label all the regions of a knot with indices
0
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Figure 11: Then assign indices to the regions adjacent to the exterior
region.



We can label all the regions of a knot with indices
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Figure 12: Diagram with all indices of regions assigned.



Self-Crossing Index (SCI) is a diagram invariant

+1 -1
sgn(c) = +1
r+1 r-1
qlnd(c) = (r—l—l)—l—rl—r—i—(r—l) _,
SCI(K ngn )qlnd(c
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Self-Crossing Index (SCI)
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Figure 13: SClis (1)(7)(1) + (—=1)(8)(5) + (-1)(2+3+4+5)+ (1)(2+
3+44+5)+(1)(1+2+3+4)=-23



Changes to SCI under Reidemeister moves are well
understood

Under Reidemeister Type 1 moves, SCl can change by any number.
Under Reidemeister Type 2 moves, SCI is unchanged.

Under Reidemeister Type 3 moves, SCI changes by +1.



For framed knot diagrams, SCI only changes under framed
Reidemeister Type 3 moves

Figure 14: Under framed Reidemeister 1 moves, SCI remains unchanged.
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Figure 15: Under framed Reidemeister 2 moves, SCI remains unchanged.
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Figure 16: Under framed Reidemeister 3 moves, SCI changes by +1.



The difference in SCl is a lower bound to the number of
framed Reidemeister moves between framed knot diagrams
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Figure 17: From Hass and Nowik, 2007

SCI(D,) = —%(3n2 —n+2)



Conclusion



Summary

Problem: Can we use knot diagram invariants to find good (or
better) lower and/or upper bounds on the number of Reidemeister
moves needed to transform one projection of a knot into a another?

» SCl is the sum of the product of the sign and index of each
crossing of a diagram.

» SCI change predictably under framed Reidemeister moves.

» We have found a quadratic lower bound for a family of knots.



Future Work:

» Develop a diagram invariant or value of a knot that is useful
for all knots.

> Is there a family of unknots that needs a polynomial of the
number of crossings of at least degree 3 in terms of
Reidemeister moves to get the trivial projection?

» Could bounds for framed unknots give bounds for unknots or
for all knots in general?
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